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Abstract—This paper presents an adaptive and intelligent
sparse model for digital image sampling and recovery. In the
proposed sampler, we adaptively determine the number of
required samples for retrieving image based on space-frequency
information content of image patches. By leveraging texture
in space and sparsity locations in DCT domain, the sampler
structure consists of a combination of uniform, random, and
nonuniform sampling strategies. For reconstruction, we model
the recovery problem as a two-state cellular automaton to
iteratively restore image with scalable windows from generation
to generation. We demonstrate the recovery algorithm quickly
converges after a few generations for an image with arbitrary
degree of texture. For a given number of measurements, extensive
experiments on standard image-sets, infra-red, and mega-pixel
range imaging devices show that the proposed measurement
matrix considerably increases the overall recovery performance,
or equivalently decreases the number of sampled pixels for a
specific recovery quality compared to random sampling matrix
and Gaussian linear combinations employed by the state-of-
the-art compressive sensing methods. In practice, the proposed
measurement-adaptive sampling/recovery framework includes
various applications from intelligent compressive imaging-based
acquisition devices to computer vision and graphics, and image
processing technology. The simulated codes are available online
for reproduction purposes.

Index Terms—Cellular automaton, compressive sensing,
measurement-adaptive sampling, sparse recovery, sparsity loca-
tion, texture.

I. INTRODUCTION

CURRENT digital imaging devices at first acquire images
and then separately compress them leading to big data-

related problems. Contrarily, the aim of emerging Compressive
Sensing (CS) theory is to merge sampling and compressing
into one step by introducing the concept of “compressing
during sensing” for reducing data-rate, acquisition time, power
consumption, and device manufacturing cost with demanding
applications to next-generation Infra-Red (IR), remote sensing
and Magnetic Resonance Imaging (MRI) systems [1–3]. The
theory of CS states that signals with a sparse representation
in a specific domain can be recovered at a rate less than
the traditional Shannon-Nyquist rate theorem [4, 5]. DCT,
wavelet, and gradient spaces represent paradigms in which
natural images are sparse or at least compressible. The later
is not fully invertible.

A. Considered Scenario and Related Arts
In the literature, significant attempts have been done to

compressively sample data at a very low sampling rate [6–
10]. Conventional CS-based sampling/recovery strategies only
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exploit the sparsity-prior of signals in an appropriate domain
[11–13]. On the other hand, theoretical compressive sampling
analyses rely on using Gaussian or random sampling matrices
to measure signals [14]. However, to design sensing matrix,
recent scientific studies discover considering signal model-
prior in sampling phase can significantly improve recovery
quality [7, 8, 10]. In this regard, the present paper concentrates
on finding a way to adaptively and sparsely sense image scene
in order to simply and efficiently retrieve the image.

Ji et al. in [6] introduced an adaptive Bayesian CS (BCS)
with abilities such as determining sufficient number of mea-
surements and confidence of recovery. The researchers in [7]
proposed a nonuniform CS-based image sampling/recovery
method in which a Hidden Markov Tree (HMT) is utilized
to consider the correlation among sparse wavelet coefficients
in both sampling and reconstructing phases, so-called uHMT-
NCS. In [8], a variable density sampling strategy was designed
in the frequency domain which exploits priori statistical dis-
tributions of images in the wavelet space. Malloy and Nowak
in [9] suggested an adaptive compressed sensing algorithm
that in comparison to standard random nonadaptive design
matrices requires nearly the same number of measurements
but succeeds at lower SNR levels. Yang et al. in [10] designed
an efficient Mixed Adaptive-Random (MAR) sensing matrix
which employs image edge information with a sensor array
16 times less than the ultimate length of recovered image.
The Iterative Method with Adaptive Thresholding (IMAT) [13]
and its modified version equipped with interpolation, IMATI
[15], are extensions of the Iterative Hard Thresholding (IHT)
family for sparse recovery [12]. Instead of a fixed thresholding,
they adaptively threshold coefficients in a transform domain
such as Discrete Cosine Transform (DCT) during iterations.
To recover sparse signals from Gaussian measurements, the
authors in [16] presented a general iterative framework based
on proximal methods called Iterative Sparsification-Projection
(ISP). ISP family contains the well-known SL0 algorithm
[17] as a special case. In [18], a learning-based approach
by jointly optimizing the sensing and overcomplete dictionary
matrices was introduced which performs better than random
matrices or the matrices that are optimized without learning
dictionary. In [19], a variational BCS in complex wavelet
domain was suggested. This model considers sparsity and
structural information of images.

B. Motivations and Contributions

Although aforementioned efforts result in performance im-
provement somewhat, it seems that the role of Artificial Intelli-
gence (AI) in the context of CS-based sampling/recovery is yet
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negligible. In this paper, we take a step towards considering AI
and present an adaptive and intelligent model for digital image
sampling and recovery. For a given number of measurements,
we show the proposed sensing matrix considerably increases
the overall recovery performance, or equivalently decreases the
number of sampling points for a specific recovery quality com-
pared to Gaussian and random sampling matrices employed by
the state-of-the-art CS methods [6, 11, 13, 16, 19]. The number
of required samples in the spatial domain to reconstruct image
is adaptively determined based on space-frequency informa-
tion content of image. To this intent, a mixture of uniform,
random, and nonuniform sampling strategies is suggested
[2]. The devised intelligent sampling mechanism donates the
advantages of simple, fast, and efficient recovery compared
to complicated methods [7, 16, 19]. For reconstruction, we
model the recovery as a Cellular Automaton (CA) machine to
iteratively restore the image with scalable windows from gen-
eration to generation. To the best of the authors’ knowledge,
this is the first work for modeling of image reconstruction
issue via a CA. The convergence of the proposed CA-based
recovery algorithm is guaranteed after a few generations, thus
making it suitable for reconstructing the present mega-pixel
range images, whereas sophisticated approaches such as ISP
[16], TSCW-GDP-HMT [19], and BCS [6] fail to process
and store such high-dimensional signals with general-purpose
computers.

The adaptivity in signal measurements helps to automati-
cally select enough sampling points based on local information
content of the scene under view. For instance, lowpass images
are sampled with low rates, whereas cluttered scenes are
acquired with more samples for an accurate reconstruction.
Generally, available methods in the literature do not have
such a degree of flexibility and for each signal are manually
adjusted at a fixed rate. This undesirable phenomenon may
lead to data-redundancy in smooth images or information-loss
in textured ones. In practice, the measurement-adaptive image
sampling/recovery scheme includes various applications from
intelligent compressive imaging-based acquisition devices [20]
to computer vision and graphics, and image processing tech-
nology, e.g. inpainting, remote sensing missing recovery, and
denoising of impulsive noise. For reproduction purposes, the
simulated codes are available online1.

Briefly, the main contributions of the paper are

 proposing a new measurement-adaptive image sampling

mechanism consisting of three uniform, random, and
nonuniform samplers which, in a synergistically manner,
incorporates local space-frequency information content of
the image,


 suggesting a novel cellular automaton model for image
recovery which its convergence is guaranteed after a few
generations, and


 exposing various examinations to evaluate the efficiency
of the proposed sampling/recovery approach under dif-
ferent settings and application areas.

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed sampler. In Section III, we

1http://ee.sharif.edu/∼imat/
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Fig. 1: The proposed measurement-adaptive sparse sampler.

explain the CA-based recoverer. Section IV evaluates the
effectiveness of our framework and compares it to modern
approaches. In Section V, we provide a discussion about
implementing the suggested method in practice. The paper is
finally concluded in Section VI.

II. INTELLIGENT SAMPLING

Based on the content of local image patches, the proposed
sampling method performs flexibly at various rates to capture
required informative samples for recovery step. Figure 1
depicts the block diagram of the suggested measurement-
adaptive sampler. As shown, the system gets a gray-level
image patch and gives the related binary mask. Due to psycho-
visual considerations, we assume that patches are square with
the length b � 8. The final sampling mask is generated
from the union of three uniform, random, and nonuniform
patterns obtained from spatial, frequency, and gradient spaces,
respectively. In the further sub-sections, we discuss about each
sampling strategy in detail.

A. Texture Measure

To adaptively sense the information content of each local
image patch, it may be required to measure a representative
criterion of signal’s complexity [21]. Here, we utilized Shan-
non’s joint entropy determined from Haralick’s co-occurrence
matrix [22, 23] as a quantitative metric to measure image block
texture. We calculate the texture percentage η P r0, 100s as

η �
100

Hmax

B̧

i�1

B̧

j�1

p̂i,j log2

�
1

p̂i,j



, (1)

where the gray-level co-occurrence matrix pP � rp̂i,jsB�B
is the joint Probability Mass Function (PMF) which is ob-
tained by the quantized or scaled version of the input image
patch, namely Gs �

�
gsi,j

�
b�b. The joint probabilities can

be defined in the horizontal, vertical, main diagonal, and
off-diagonal directions. We used the horizontal neighbor as
defined in MATLAB by p̂i,j � P

�
gsr,c � i, gsr,c�1 � j

�
, where

1 ¤ i, j ¤ B, 1 ¤ r ¤ b, and 1 ¤ c ¤ b � 1. The
variables r and c represent row and column, respectively.
We considered the number of distinct gray levels in Gs as
B � 8, hence gsi,j P r1, Bs , 1 ¤ i, j ¤ b. The normalizer
Hmax in (1) denotes the maximum entropy of pP, which
obtains from the uniform distribution, i.e. p̂i,j � 1

B2 , @
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Fig. 2: From left to right, patterns of the uniform sampler
defined by matrices PUVL, PULT, PUBT, PUHT, and PUVH.

1 ¤ i, j ¤ B. Thus, Hmax �
°B
i�1

°B
j�1

1
B2 log2pB

2q, which
B � 8 ñ Hmax � 6.

B. Uniform Sampler

In the proposed uniform sampling strategy, we punch local
patches at certain regular locations based on their local texture
content in space domain. In fact, the punch operation makes
appropriate regular patterns for a stable recovery. As shown
in Fig. 1, the uniform sampler at first gets the image patch
R � rri,jsb�b . Afterwards, the textureness of the signal is
estimated. The number of punched points is proportional to
the calculated texture percentage. By this intuition, whenever
the textureness is high, we decorate the image with denser
regular points and vice versa. Therefore, the binary mask of
uniform pattern is determined by the following fuzzy rule

Pu �

$''''&
''''%

PUVL, 0 ¤ η   10
PULT, 10 ¤ η   25
PUBT, 25 ¤ η   45
PUHT, 45 ¤ η   70
PUVH, 70 ¤ η ¤ 100

, (2)

in which the matrices PUVL, PULT, PUBT, PUHT, and PUVH

are assigned for very-low, low, bandpass, high, and very-
high textures, respectively. Figure 2 shows the regular lattices
employed in the proposed uniform sampler. The number of live
cells (punched points) in the matrices PUVL, PULT, PUBT,
PUHT, and PUVH are 20, 21, 22, 23, and 24, respectively.
This reveals the relation between the texture and the number
of live cells is nonlinear with an increasing exponential form.
The configuration of punched points affects the recovery per-
formance. Sub-optimal lattices should have minimum number
of sample points and maximum number of live cells in a
predefined neighboring of missing samples. They should also
consider patch boundaries and local correlation. We tried to
experimentally design patterns based on such constraints.

C. Random Sampler

The intermediate layer of Fig. 1 depicts the proposed
random sampler. Here, we first convert the data matrix R
from the spatial domain to the frequency space, Rf P Rb�b,
by using 2-D DCT transform as Rf � TRTT, where the
matrix T represents the transformation kernel of DCT. In
DCT domain, samples are decorrelated and sparse. After an
adaptive quantization of DCT coefficients, we estimate the
rate of random sampling. Accordingly, a uniformly distributed
random mask is finally generated. In the following sections,
we discuss about creating this mask.

1) Random Sampling Rate Measure: To measure spar-
sity, one way is to threshold insignificant coefficients in a
transform domain [13]. However, such thresholding may be
inaccurate due to varying information of the signal under
process/acquisition. To overcome this problem, we suggest
adaptive quantization of DCT coefficients inspired from the
following observation.

Observation 1 (Adaptive quantization): In JPEG compres-
sion standard where DCT transform is utilized, the results
in [21] reveal that the number of zero entries of quantized
DCT coefficients is inversely proportional to both compression
quality level, l, and the image block texture, η. Now, let the
matrix rRf � rr̃fi,js P Zb�b be the quantized DCT matrix
for a b � b image patch, then ‖ rRf ‖`0 � b2 � ZprRf q,
where ‖ � ‖`p denotes the `p-norm and the operator Zp�q
counts the number of zero entries of a matrix/vector. From
the above results, we have both ‖ rRf ‖`09

1
l and ‖ rRf ‖`09

1
η .

By assuming their equivalence, we have η � l. This shows the
texture percentage defined in (1) can be a good criterion for
adaptive quantization of information in the frequency domain
to measure the necessary random sampling rate.

Details: Based on Observation 1, we calculate the quantized
DCT matrix as rRf � tRf cQηs, (3)

where the symbols c and t�s denote the entry-by-entry divi-
sion and the nearest integer, respectively. The matrix Qη ��
qηi,j

�
b�b, @q

η
i,j P N, also represents the quantization table

related to the texture η. For determining Qη , we exploited the
Quantization Tables (QTs) introduced by Independent JPEG
Group (IJG) [24]. Based on the value of η, the corresponding
quantization matrix is chosen and applied (See Appendix.).
Therefore, we adaptively derive sparsity number from the
number of nonzero entries of quantized DCT coefficients by
k � ‖ rRf ‖`0 . Now, we suggest measuring the rate of random
sampling as the following formula, which is consistent with
the theory of CS

Rrs �

"
tc � k � log10pd �

n
k qs, k � 0

0, otherwise
, (4)

in which n � b2, and c and d are tunable factors. The
parameter c changes the number of undersampled points,
whereas the coefficient d prevents from decaying sampling rate
on well-textured patches and saturates it at a relatively fixed
rate to control unnecessary information. By setting c � 1.3
and d � 2.8, the function in (4) is a non-decreasing curve vs
k. Figure 3 plots both the proposed formula and that of CS
theory, i.e. c�k�log10p

n
k q, which is generally apt for n ¡¡ k. It

is important to note that, in practical situations, the number of
non-zero quantized DCT coefficients, k, may be a large value
even near the length of signal, n. This phenomenon occurs
especially in high quality level settings or textured regions.
Generally, high performance compressive sensing in such a
scenario is problematic, because compressive sensing theory
for real-world applications imposes to the sampling rate be
at most 50% [25]. We tried to consider this limitation for
calculating the rate of random sampling in (4) by setting c
and d.
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Fig. 4: A partitioning of 2-D frequency domain defined in
[21, 26] into 6 regions.

2) Graduate Randomization Procedure: Instead of blind
random sampling adopted by researchers of compressive sens-
ing field, we introduce a Graduate Randomization Procedure
(GRP). In this procedure, by receiving both the feedback of
the sampling rate in frequency domain and the generated
uniform mask, we add a certain randomness to the uniform
pattern. In other words, from low- to high- textured patches,
GRP gradually adds random nonuniformity to the uniform
base lattice. It is important to note that random samples are
selected and added to locations other than uniform marks. In
order to generate the random pattern, the GRP algorithm is
implemented as follows


 Find the number of zero elements in the uniform pattern,
i.e. ZpPuq, and their locations by storing in the set L � 
ppi, qiq

(ZpPuq
i�1

, where pi and qi represent the row and
column of the ith location, respectively.


 Shuffle the location of zero entries and substitute the set
L with the result.


 Truncate (4) by

Rrs �

"
ZpPuq, Rrs ¡ ZpPuq
Rrs, otherwise

. (5)


 Generate Rrs integer values randomly without re-
placement in the range r1,ZpPuqs, namely v �
rv1, v2, � � � , vRrss

T.

 Define the matrix of random pattern, Pr � rpri,jsb�b , and

initialize it with Pr � O, where O represents a b� b
zero matrix.


 For n � 1 to Rrs, at first, assign pi, jq Ð Ltvnu, and
then pri,j Ð 1.

D. Nonuniform Sampler
It is very important to preserve the structure of image

like edges in recovery side. Generally, edge preservation is a

difficult task in interpolation even for sophisticated algorithms.
Due to fuzziness nature of image edges, an edge-prior sampler
can reduce uncertainty in reconstruction phase. Although, the
GRP carry this task somewhat, in well-structured horizon-
tal, vertical, and diagonal edges, or periodic configurations
which their recovery is perceptually important from subjective
evaluation viewpoint, more edge samples are required to
reduce uncertainty and unambiguously recover the missing
scattered samples. Hence, we suggest a sparsity location-aware
algorithm to capture horizontal, vertical, and diagonal edges
in sampling phase.

To implement the above idea, we address sparsity locations
in different frequency regions. Figure 4 depicts a partitioning
of 2-D frequency domain defined in [21, 26]. Except for the
single DC mode D, the five subsets of AC modes exist, namely
S1 to S5 corresponding to low, horizontal, vertical, diagonal,
and high frequencies information, respectively. If nonzero
quantized DCT coefficients are sparsely located in horizontal,
vertical, or diagonal regions, the corresponding edge points are
sampled in space domain. For instance, in a block of well-
structured vertical edges, the nonzero coefficients are only
appeared in the partitions S1 and S2. To detect the edge
maps, we first determine a D-directional decomposition of the
image patch gradient [27, 28]. For this purpose, we utilized
Sobel operator to calculate the gradient of image block,
g � r

Bri,j
Bx ,

Bri,j
By sT, @i, j, and considered D � 8 with four

cardinal directions N, E, S, W in addition to four ordinal di-
rections NE, SE, SW, NW to decompose the block. In order to
preserve the image structure in the boundary of blocks, we also
acquired border pixels for computing the gradient. Let Fdγ �
rf
dγ
i,j sb�b, @γ P r1, Ds � tN,NW,W,SW,S,SE,E,NEu �

td1, d2, d3, d4, d5, d6, d7, d8u, be D-directional gradient fea-
tures. To project the gradient vector g in px-yq plane onto
the two adjacent directions

α1 �

$&
%

|p| Bri,j
Bx |�| Bri,j

By |q|
‖g‖`2

, ‖ g ‖`2 � 0

0, otherwise
, (6)

α2 �

$&
%

?
2 minp| Bri,j

Bx |,| Bri,j
By |q

‖g‖`2
, ‖ g ‖`2 � 0

0, otherwise
, (7)

the following rules are utilized.

 If Bri,j

Bx ¥ 0 ^ |
Bri,j
By | ¤ |

Bri,j
Bx |, then assign fd1

i,j Ð α1;
else if Bri,j

Bx   0^ |
Bri,j
By | ¤ |

Bri,j
Bx |, then fd5

i,j Ð α1; else
if Bri,j

Bx ¥ 0 ^ |
Bri,j
By | ¡ |

Bri,j
Bx |, then fd7

i,j Ð α1; else if
Bri,j
Bx   0^ |

Bri,j
By | ¡ |

Bri,j
Bx |, then fd3

i,j Ð α1.

 If Bri,j

Bx ¥ 0 ^
Bri,j
By ¥ 0, then assign fd8

i,j Ð α2; else if
Bri,j
Bx ¥ 0 ^

Bri,j
By   0, then fd2

i,j Ð α2; else if Bri,j
Bx  

0^
Bri,j
By   0, then fd4

i,j Ð α2; else if Bri,j
Bx   0^

Bri,j
By ¥ 0,

then fd6
i,j Ð α2.

Afterwards, we apply a threshold to the magnitude of
two directions with stronger gradients to suppress redundant
uninformative samples. Figure 5 illustrates the directional
decomposition of the gradient vector g into two adjacent
directions. For this example, we have fd1

i,j � α1, fd2
i,j � 0,
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fd3
i,j � 0, fd4

i,j � 0, fd5
i,j � 0, fd6

i,j � 0, fd7
i,j � 0, and fd8

i,j � α2

based on the specified rules. The steps of nonuniform sampling
algorithm are implemented as follows.


 Initialize D-directional gradient matrices, i.e. Fdγ � O,
@γ P r1, Ds.


 Extract D-directional gradient features as explained
above for the vector g.


 Obtain the normalized versions of Fdγ , @γ P r1, Ds,
between 0 and 1.


 Define the matrix of nonuniform pattern, Pn �
rpni,jsb�b , and initialize it as Pn � O.


 For determining the structure of edges, initialize a binary
string with the length of the number of AC frequency
regions, Nfr � 5, such as a � “a1a2a3a4a5” � “00000”.


 For s � 1 to Nfr, obtain the set Bs � tr̃fi,j |pi, jq P Ssu.
If ‖ Bs ‖`0 � 0, set as Ð “1”.


 If the string a � “11000” _ “10100” _ “10010” _
“11010” _ “10110”, which respectively represent verti-
cal, horizontal, diagonal, vertical-diagonal, or horizontal-
diagonal edges, at first, sort the set t

°b
i�1

°b
j�1 f

dγ
i,j u

D
γ�1.

Afterwards, for the two directions having stronger gradi-
ents, calculate its gradient magnitude, and then renormal-
ize it between 0 and 1. Finally, for i � 1 to b and j � 1
to b, if the resulting magnitude of gradient exceeds the
predefined threshold 0 ¤ τ ¤ 1, set pni,j Ð 1.

E. Measurement-Adaptive Sampling Algorithm

As shown in Fig. 1, the ultimate binary mask is generated
by the union of uniform, random, and nonuniform patterns as

M �
¤

iPtu,r,nu
Pi. (8)

The regularity, randomness, and structure of patterns in the
above combined form create naturally a sampling mask
with chaotic behavior. For selecting the threshold τ in the
nonuniform sampler, a trade-off between subjective quality
enhancement and increased redundancy exists. If τ Ñ 1, then
M Ñ Pu

�
Pr. Therefore, we empirically set τ � 0.9 to

maintain sampling near an optimal sub-Shannon-Nyquist rate.
The downsampled image patch is constructed from

S �MdR, (9)

Algorithm 1 The proposed adaptive sampling algorithm

1: Input: The image patch R.
2: Measure the texture η as (1).
3: Generate the uniform sampling mask Pu by (2).
4: Determine the quantization table Qη in terms of η.
5: Transform the patch R to 2-D DCT domain Rf .
6: Quantize DCT coefficients via rRf � tRf cQηs.
7: Estimate the sparsity number k � ‖ rRf ‖`0 .
8: Calculate the rate of random sampling as (4).
9: Perform the GRP routine to obtain the random mask Pr.

10: Run the nonuniform sampler algorithm to generate Pn.
11: Combine the created masks as M �

�
iPtu,r,nuPi.

12: Obtain the scattered sample points by S �MdR.
13: Outputs: The mask M and the subsampled image S.

Fig. 6: Applying Algorithm 2 on a 32� 32 DC image. From
left to right, sampling matrices encompassed by the green-
colored frame illustrate initial state, and the evolution at 1st,
2nd, and 3rd generations, respectively.

in which the symbol d denotes Hadamard product. Algo-
rithm 1 summarizes the proposed adaptive intelligent image
sampling strategy. For the previously captured image I of the
dimension h � w, the proposed block-wise algorithm can be
repeated on all nonoverlapping image patches to get the overall
sampling mask Ms � rms

i,jsh�w and the subsampled image
Is � risi,jsh�w.

III. CELLULAR AUTOMATON-BASED IMAGE RECOVERY

As mentioned in the literature, different approaches exist
for image recovery [6–9, 11–13, 16–19]. Here, we tailor a
novel technique to recover scattered samples obtained from
the intelligent sampling stage. We model the reconstruction
mechanism by a dynamic CA. Cellular automata are simple
intelligent agents with fundamental characteristics of locality,
uniformity, and synchronicity [29]. They are composed of
discrete cells equipped with special rules to be able to solve
sophisticated problems. Various applications have been found
for CA in image processing tasks such as noise removal, edge
detection, and forgery localization [30].

A. Cellular Automaton Modeling for Recovery

In modeling, we consider a 2-state CA machine, in which
the states of dead and live cells represent the zero and
one values in the sampling mask Ms, respectively. Con-
trary to conventional fixed-neighbor CA models, the proposed
CA-based recoverer performs as an iterative method which
applies variable-scale windows to the sampled image Is.
The size of square window, Ω, increases at each generation
of CA. In summary, we define the elements of model as
MpMs, Is,Ω, σ, ζ,pI,Mgq, in which σ represents the standard
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deviation of a Gaussian kernel, ζ ¥ 1 is a coefficient
for increasing σ during generations, and Mg and pI denote
the matrix at next generation of Ms and the recovered
image, respectively. The rule behind the suggested recovery
algorithm is simple yet efficient as follows. By considering
the correlation among adjacent samples, missing pixels are
reconstructed via a Gaussian-weighted averaging. We find live
cells of Is around the central dead cell ms

i,j and extract their
corresponding weights in pΩ � 1q-Moore neighborhood [29],
namely the dynamic-length vectors x � rx1, � � � , xks

T and
ω � rω1, � � � , ωks

T, respectively. If at least one live cell exists,
then, the dead cell ms

i,j is replaced with the weighted mean
of live cells in the subsampled image and that dead cell will
revive at next generation. At each generation of CA-based re-
coverer, the model elements are updated. Algorithm 2 presents
the pseudo-code of CA-based image recovery algorithm, in
which the symbols t�u and r�s represent the floor and ceiling
functions, respectively. We utilized the replication rule to cope
with boundary conditions of border cells.

After the last generation, we utilize a post processing stage
to alleviate possible blockiness artifacts due to the patch-based
nature of recovery. This phenomenon may be observed in plain
regions. Based on the coding style of measurement-adaptive
sampler, the number of live cells within a window can be
an appropriate criterion to discriminate plain regions from
textured ones in the recovery phase. Therefore, we apply a
conditional smoothing filter only for flat regions. To this intent,
at first, we initialize the post-processed result pIp � rpipi,jsh�w
as pIp � pI. Afterwards, for all i P r1, hs and j P r1, ws, we scan
the image pI � rpii,jsh�w with a square window of the length
Ωf � 3. If the number of live cells in the initial sampling
mask M

p0q
s inside the window are less than the threshold

tρ � Ω2
f s, the corresponding pixel values of pI in the window

are smoothed via the Gaussian kernel Wσf � rw
σf
i,j sΩf�Ωf ,

for which 0 ¤ ρ ¤ 1. Then, the result is placed into pipi,j . In
experiments, we set the coefficient ρ � 0.3 and the standard
deviation of smoother σf � 1.5.

B. Convergence Analysis

As illustrated in Fig. 7, the CA-based recoverer first starts
with exposing high-textured dense missing samples at a fine
scale. Then, by updating model parameters, this process con-
tinues and finally terminates by retrieving lowpass sparse sam-
ples at a coarse scale. The advised variable-scale windowing
in comparison to fixed window speeds up the convergence rate
of Algorithm 2 without sacrificing recovery quality. Also, this
mechanism controls better error propagation during recursion.
In Lemma 1, we prove the algorithm quickly converges after a
few generations for an image with arbitrary degree of texture.

Lemma 1 (Convergence guarantee): Let patches of the
image I � rii,jsh�w be square of the length b � 8. If Ng
denotes the number of CA generations, then, Algorithm 2 for
recovering the image I guarantees to converge at most at three
iterations, i.e. Ng ¤ 3.

Proof: To prove, we consider the worst case, i.e. the
image under reconstruction is a fully DC image as the possible
sparsest signal to determine the upper bound. In such a case,

Algorithm 2 The proposed CA-based recovery algorithm

1: Inputs: The mask Ms and the subsampled image Is.
2: Initialize Ω � 3, σ � 1, ζ � 1.05, pI � Is, Mg � Ms,

and M
p0q
s �Ms.

3: Calculate the number of dead cells by Nd � ZpMgq.
4: while Nd � 0 do
5: ωh � tΩ

2 u
6: Obtain the Gaussian kernel Wσ � rwσi,jsΩ�Ω.
7: for r Ð 1, h do
8: for cÐ 1, w do
9: if ms

r,c � 0 then
10: ϑflag � 0
11: t � 1
12: for pÐ �ωh, ωh do
13: for q Ð �ωh, ωh do
14: if ms

r�p,c�q � 1 then
15: xt � isr�p,c�q
16: ωt � wσ

p�r Ω
2 s,q�r Ω

2 s

17: ϑflag � 1
18: tÐ t� 1
19: end if
20: end for
21: end for
22: if ϑflag � 1 then
23: îr,c �

xTω
Σkωk

24: mg
r,c � 1

25: end if
26: Release the vectors x and ω.
27: end if
28: end for
29: end for
30: Ω Ð Ω� 2
31: σ Ð ζ � σ
32: Is � pI
33: Ms �Mg

34: Nd � ZpMgq
35: end while
36: Apply the post processing on pI via M

p0q
s to obtain pIp.

37: Output: The recovered post-processed image pIp.

for all rhb s � rwb s patches, we have η � 0 which results
in Pu � PUVL, and the random and nonuniform patterns
equal Pr � Pn � O. Hence, M � Pu for all patches. Let
the live and dead cells be represented by white- and black-
colored cells, respectively. For visualization, Fig. 6 illustrates
generations of the sampling mask matrix Ms for a given flat
DC image of the dimension 32 � 32. If the matrix M

pκq
s

denotes the sampling mask at generation κth, then it is shown
in Fig. 6 that the number of dead cells at the 3rd generation
is Nd � ZpMp3q

s q � 0. This implies that Ng � 3 for a
completely DC image, because the distance between two live
cells is 7 pixels in both horizontal and vertical directions. For
a given image with a certain degree of texture, the density of
live cells in Ms is always more than or equal to the worst
case, thus demonstrating Ng ¤ 3.

Example 1 (Sampling and recovery): Figure 7 shows the
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Fig. 7: From top to down, different images respectively show
the original images, sampling masks, subsampled images,
recovered results after 1st, 2nd and 3rd generations, and the
results of applying conditional smoother.

original images of Baboon, Boat, and Lena for which the
sampling masks, the intermediate and final results of recov-
ery step are visualized. These images have different texture

averages sorted in descending order, for which the sampler
automatically extracted 35.23, 25.16 and 18.12 percent pixels,
and the recoverer estimated the images with PSNRs of 29.38,
29.43 and 32.19 decibels, respectively.

IV. EXPERIMENTS

This section provides extensive experiments to support our
findings. Algorithms were implemented in MATLAB and run
on an Intel Core i7 2.2GHz laptop with 8GB RAM.

A. Experimental Settings

In order to evaluate the performance of our sam-
pling/recovery framework and comparing it with other related
approaches, we utilized various databases having different
statistical characteristics. Image sets include the standard
databases of NCID [31], CCID [32], UCID [33], Microsoft
Research Cambridge Object Recognition Image Database2,
and a collection of well-known test images such as Baboon,
Cameraman, Lena, etc. Beside, we gathered a set of IR test
images as well as a mega-pixel range images database called
RCID [34], to more precisely investigate the efficiency of our
algorithms. Some of these images are shown in Fig. 13. In
order to evaluate recovery performance, we employed stan-
dard objective criteria of PSNR, SSIM [35], and Normalized
Recovery Error (NRE) defined as NRE � ‖ pIp � I ‖`2{‖ I ‖`2
as well as subjective evaluation. We compared our sampling
and recovery algorithms to related approaches including the
intelligent MAR sampler suggested in [10], the scattered data
recovery technique of spline interpolation and the state-of-the-
art methods of BCS [6], uHMT-NCS AMP [7], IMAT [13],
IMATI [15], ISP [16], and TSCW-GDP-HMT [19].

We adjusted the set of parameters so that, in the suggested
sampler, the average sampling rate doesn’t exceed 50% due to
the limitation imposed in compressive sensing theory for real-
world applications [25], but at the same time a sub-optimal
average recovery performance attains on a validation image-
set. For tuning parameters, we used images of UCID database
as validation set. To generate uniform matrices in (2), different
regular and periodic lattices with various punched points may
be used. We examined a set of such configurations and finally
selected the patterns introduced in Fig. 2, which optimize the
aforementioned objective criterion. We also set parameters of
CA-based recoverer and its post-processing stage to obtain a
sub-optimal objective PSNR performance criterion in dB. The
influence of post-processing stage with appropriate parameters
of σf and ρ in the CA-based recovery algorithm is to improve
PSNR up to about 0.5dB. The standard deviation of smoother
σf , meanwhile, has negligible impact on performance. The
number of punched points in the uniform sampler, the coef-
ficients c and d in the random sampler, and the threshold τ
in the nonuniform sampler control the sampling rate in the
suggested algorithm. On one hand, for natural image patches,
we have often η ¤ 45, thus considering short intervals for
such textures. This also means the number of punched points
is often less than or equal to 4. On the other hand, the main

2https://www.microsoft.com/en-us/download/details.aspx?id=52644
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Fig. 8: Average PSNR (dB) vs average sampling rate (%) on
images listed in Table I.
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Fig. 9: The influence of the coefficient ρ on recovery perfor-
mance for images listed in Table I.

usage of the coefficient d is as a saturator factor. Therefore,
the influential factors for increasing or decreasing the adaptive
sampling rate are the coefficient c and the threshold τ .

B. Performance on Standard Databases

Here, we evaluate the performance of our sampling/recovery
method on 21 well-known test images of the size 512�512 and
four standard databases. The adaptive sampling rate measured
by sampler and recovery quality on image processing test
images are tabulated in Table I. For an average 23.75%
dynamic sampling rate, the mean of PSNR was 30.48dB. For
variations 0 ¤ c ¤ 3 and 0 ¤ τ ¤ 1, the curves of average
PSNR (dB) vs average sampling rate (%) on 21 well-known
images are depicted in Fig. 8. Figure x also shows average
PSNR (dB) vs ρ. In this figure, the coefficient ρ � 0 means
the recovery without applying post-processing step and the
optimal value is ρ� � 0.3, thus demonstrating about 0.5dB
gain.

As an example, Fig. 10 illustrates recovery of Baboon
image for compared state-of-the-art approaches. To be able to
compare different algorithms of various complexities on the
laptop, we reduced the image to the size 128 � 128. For all
methods, the sampling rate was 36.62%, i.e. 6000 measure-
ments. Based on PSNR, the proposed approach outperforms
other methods. For BCS, IMAT, IMATI, TSCW-GDP-HMT,
and the proposed algorithm, the average PSNR (dB) on all

Fig. 10: PSNR for different methods in dB. From top to down
and left to right, the original image, recovered images obtained
by uHMT-NCS AMP (24.15), ISP (19.46), BCS (18.58), IMAT
(24.25), IMATI (24.95), TSCW-GDP-HMT (26.72), and the
proposed algorithm (27.33), respectively.
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Fig. 11: The run-time (s) of different methods in terms of
sampling rate (%) on the image of Fig. 10.

images with the size of 128 � 128 was 18.52, 23.34, 24.26,
28.54, and 27.99, respectively. Other methods such as ISP
failed to compute the image restoration process. The average
sampling rate determined by our algorithm was 34.3%. For a
fair comparison, we set this rate for competing algorithms, too.
Although the average PSNR for TSCW-GDP-HMT algorithm
is 0.55dB more than the suggested method, its computational
complexity is very high. To clarify this issue, Fig. 11 compares
the run-time (s) of different methods in terms of sampling rate
(%) on the 128 � 128 Baboon image. As seen, the proposed
method is ranked number two among different methods.

Table II reports the performance of our approach on NCID,
CCID, UCID, and RCID databases, which are sorted in
descending order of textural information; i.e. RCID and NCID
databases have minimum and maximum texture averages, re-
spectively. The average sampling rate acquired by the proposed
dynamic sampler confirms this subject. Images of each image-
set have also intra-database variability of textural information.
However, we tuned parameters of our sampler so that dynamic
sampling rate for each image doesn’t approximately exceed
50%, based on the limitation imposed in compressive sensing
theory for real-world applications [25]. This leads to an
acceptable average PSNR with a high variance, so that the
range of PSNR (dB), [min(PSNR), max(PSNR)], is [17.39,
48.48], [21.91, 41.25], [18.41, 40.03], and [26.29, 44.35] for
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TABLE I: Results of the proposed sampling/recovery method

Image number Image name Sampling rate (%)
Performance metrics

PSNRpdBq SSIM NRE

1 Baboon 35.23 29.38 0.8814 0.0085

2 Barbara 28.86 26.8 0.8431 0.0143

3 Boat 25.16 29.43 0.8227 0.0093

4 Butterfly 24.01 30.27 0.8356 0.0082

5 Cameraman 15.39 32.77 0.9295 0.0074

6 Einstein 18.09 31.26 0.7867 0.0082

7 Elaine 19.56 31.26 0.7613 0.0106

8 Fruits 16.6 31.13 0.8605 0.0056

9 Goldhill 25.51 30.4 0.8199 0.0107

10 Jetplane 18.59 31.36 0.91 0.0078

11 Lake 25.67 29.21 0.8324 0.0155

12 Lena 18.12 32.19 0.8779 0.0068

13 Livingroom 29.04 29.27 0.8288 0.0116

14 Owl 34.48 28.53 0.819 0.0115

15 Peppers 18.97 31.19 0.8464 0.0129

16 Pirate 24.62 29.99 0.8488 0.0095

17 Shack 34.1 27.09 0.8045 0.0234

18 Walkbridge 38 27.38 0.8279 0.0119

19 Woman-blonde 21.73 29.73 0.8229 0.0115

20 Woman-darkhair 11.55 36.69 0.9265 0.0053

21 Zelda 15.41 34.72 0.8915 0.0076

Average 23.75 30.48 0.8465 0.0104

NCID, CCID, UCID, and RCID databases, respectively. From
compression viewpoint, recovery performance in comparison
to sensed samples is promising for all databases.

C. Test on Infra-Red Imaging Systems

Infra-red imaging has a wide range of applications from
surveillance and Intelligent Transportation Systems (ITSs) to
medical imaging. These images are naturally sparse and of
interest in the compressive sensing community to fabricate
their low-cost CS-based imagers [36]. In this experiment, we
evaluate the performance of adaptive sampling/recovery frame-
work on a test-set including 20 images grabbed by various
near IR cameras for ITSs applications such as License Plate
Recognition (LPR). Four representative IR images are shown
in the first row of Fig. 13. Specifically, for recovering images
1 to 4 in this figure, PSNRs(sampling rates) in terms of dB(%)
were 46.68(2.08), 35.89(11.58), 42.04(4.41) and 38.86(6.57),
respectively. Generally, all IR images were recovered by an
average PSNR of 39.28dB for the average adaptive sampling
rate 7.16%, thus demonstrating an excellent IR recovery
quality of our scheme for the high sample reduction.

For BCS, IMAT, IMATI, TSCW-GDP-HMT, and the pro-
posed algorithm, the average PSNR (dB) on all images with
the size of 128�128 was 28.44, 22.11, 26.34, 35.23, and 31.88,
respectively. The average sampling rate determined by our
algorithm was 15.37%. For a fair comparison, we set this rate
for competing algorithms. The performance of the proposed
method is ranked number two among different methods.

D. Influence of Uniform and Nonuniform Samples

In this experiment, we considered two scenarios to evaluate
the role of the proposed uniform and nonuniform samplers. In
the first scenario, we omitted our proposed uniform sampler

from the scheme of Fig. 1 and compared the resulting ran-
dom/nonuniform sampler with the whole model. This can be
done by setting Mu � O. In this case, for a fair comparison
by preserving samples at an equal rate, we can manually
increase the coefficient c in the random sampler or decrease τ
in the nonuniform sampler. Here, we only increased c from the
resulting random/nonuniform sampler. In this case, the average
PSNR on 21 well-known images listed in Table I was 29.78dB.
In comparison to the result reported in Table I, a decrease
of nearly 0.7dB in PSNR is seen which demonstrates the
importance of existing uniform sampler. It is noticeable that
performance reduction in low-pass and periodic images like
Cameraman and Barbara is much more than cluttered ones.

In the second scenario, the nonuniform sampler was ne-
glected by setting τ � 1. Similarly, we increased c to
equalize the rate of resulting uniform/random sampler with
the complete scheme. The average PSNR was 30.52dB, that
is 0.04dB more than the average of Table I. Although such an
objective evaluation shows a little performance improvement
in the absence of nonuniform sampler, different subjective
evaluations narrate a better reconstruction of image structure
such as edges in the presence of nonuniform sampler. For
instance, Fig. 12 visualizes this phenomenon for four images
in which reconstructed edges are sharper in the entire solu-
tion than the second scenario. Therefore, for approximately
equal sampling rate and objective PSNR metric, the combined
strategy has subjective superiority in performance.

E. Recovery Performance under Fixed Sampling Structures

This section merely compares the performance of different
recovery approaches under fixed sampling structures. To this
intent, we considered two sampling scenarios including con-
ventional random and our measurement-adaptive samplers. For
recovering scattered samples obtained from the proposed in-
telligent sampling stage as well as random sampling structure,
various approaches such as scattered data interpolators can be
employed. Therefore, in addition to modern sparse recovery
techniques [6, 13, 15, 16, 19], we applied the prominent
scattered spline interpolator of spline to separately investigate
the efficiency of our CA-based recoverer under the considered
scenarios.

In this experiment, we address the problem of image re-
construction of different scales. To do this, we selected 4
mega-pixel images from RCID database with the original size
minph,wq � maxph,wq � 3456 � 5184 or vice versa. These
images are shown in the second row of Fig 13. To evaluate the
efficiency of the mentioned approaches, by using the bicubic
interpolation, we generated 6 down-sampled versions for each
of which by a factor about Ó 2 to finally construct a 7-level
pyramid. Table III compares the proposed CA-based recovery
algorithm to modern reconstruction methods under random
and adaptive sampling scenarios for original and scaled im-
ages. From lowest to highest resolution, i.e. in the direc-
tion of increasing correlation, the average dynamic sampling
rates (%) were 42.95, 38.63, 34.4, 30.21, 26.69, 22.37, and
15.59, respectively. For a fair comparison, we set the random
sampling rate equal to that average dynamic rate determined
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TABLE II: Performance of the proposed image sampling/recovery framework on four standard databases

Database Total images Image dimensions pµ� σ2q of sampling rate (%)
pµ� σ2q of performance metrics

PSNRpdBq SSIM NRE

NCID [31] 5150 256� 256 37.29� 3.4 26.57� 26.04 0.8355� 0.0049 0.02� 9.56e-5

CCID [32] 1096 576� 768 26.68� 1.35 29.95� 11.22 0.849� 0.0025 0.0091� 2.2e-5

UCID [33] 1338 384� 512 26.56� 0.91 28.58� 9.1 0.8654� 0.0024 0.0154� 0.63e-5

RCID [34] 208 3456� 5184 12.24� 0.54 36.49� 10.06 0.9282� 9.68e-4 0.0021� 1.3e-6

Fig. 12: From left to right and top to down, the reconstruction
of Walkbridge, Livingroom, Jetplane, and Lake images without
and with nonuniform sampler, respectively.

by measurement-adaptive sampler. The bolded values show
the best performance. Except for very low resolution levels,
ISP, TSCW-GDP-HMT, BCS, and spline methods failed to
yield viable results due to computational complexity of matrix
operations or huge memory requirement. Because of heavy
blockiness effects, BCS algorithm fails to reconstruct images
in both the random measurement and the adaptive scheme
especially in lowpass images. Generally, state-of-the-art results
were obtained for configurations of measurement-adaptive
sampler+spline for low-resolution and measurement-adaptive

Fig. 13: From left to right, images in the first and the second
rows indexed by numbers 1 to 4, show representative infra-red
and RCID mega-pixel images, respectively.

sampler+CA for high-resolution levels. This demonstrates the
power of measurement-adaptive sampling scheme.

It is noticeable that IMAT and IMATI recovery methods
reconstruct the whole image rather than block-wise processing.
The sub-optimal parameters for adaptive thresholding tech-
nique of IMAT were α � 0.5, β � 50, and Niteration � 30.
In ISP algorithm, DCT was utilized as sparsifying transform
and hard thresholding function. We also set its sub-optimal
parameters as γ � 0.4, σnoise � 0, τf � 5e-6, c � 0.9,
I � 3, and maxiter � 300. TSCW-GDP-HMT method uses
Generalized Double Pareto (GDP) distribution for modeling
signal sparsity. An inherent limitation of this algorithm is that
the input image should be square with a length of multiples
of 8. To tackle this problem and compare different approaches
as fair as possible, we first considered the nearest length more
than or equal to dimensions reported in Table III, and then
rescaled the recovered image to the real size. BCS algorithm
utilizes Daubechies1 2-D wavelet at four decomposition levels.
We also used MATLAB built-in function to implement spline
interpolation.

F. Evaluation under Fixed Recovery Algorithms

In this experiment, we evaluate the performance of three
sampling methods including the pure random, the state-of-the-
art dynamic MAR sampling approach [10], and the suggested
sampler under fixed recovery algorithms. We utilized 21
well-known test images of the original size 512 � 512 for
performance evaluation. As known in Table III, only IMAT,
IMATI and the proposed CA-based recoveres can restore the
images of such dimensions. Hence, these recovery algorithms
were considered to be able to recover subsampled images.
MAR sensing matrix is basically generated from the low-
resolution versions of images with the size 128 � 128. For
a fair comparison with this method, we created subsampled
images from Hadamard product of MAR masks and original
images in recovery side. Figure 14 depicts average PSNR
criterion in dB for different sampling/recovery configurations.
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TABLE III: Analyzing the performance of different recovery techniques in the case of two distinct sampling scenarios on
images shown in the second row of Fig. 13. For each scenario, the values in bold type show the best performance.

Image number Size at pyramid level
PSNRpdBq

Random sampling scenario Proposed measurement-adaptive sampling scenario
IMAT IMATI ISP TSCW-GDP-HMT BCS Spline CA IMAT IMATI ISP TSCW-GDP-HMT BCS Spline CA

1

56� 80 22.79 20.27 20.11 27.7 7.93 25.71 25.64 21.2 20.27 18.56 25.54 8.43 27.49 26.56
104� 160 22.88 24.1 F 29.56 8.77 26.44 26.02 21.03 21.73 F 28.55 8.94 28.37 27.15
216� 320 22.61 24.02 F F F F 25.07 20.27 21 F F F F 26.88
432� 648 22.82 25.46 F F F F 25.36 20.15 22.36 F F F F 27.93
864� 1296 23.84 27.82 F F F F 27.81 19.87 23.26 F F F F 30.27
1728� 2592 24.74 31.57 F F F F 31.49 18.59 24.19 F F F F 33.3
3456� 5184 22.45 35.31 F F F F 35.33 15.58 26.48 F F F F 36.7

2

56� 80 21.92 19.7 18.26 25.96 8.75 25.62 24.63 23.86 19.4 20.5 24.03 7.01 27.18 25.78
104� 160 22.82 23.72 F 27.3 7.63 26.06 25.27 23.9 23.87 F 26.23 8.79 27.84 26.63
216� 320 23.22 24.36 F F F F 25.7 23.22 24.43 F F F F 27.3
432� 648 23.64 26.22 F F F F 26.7 22.44 25.05 F F F F 28.17
864� 1296 24.22 27.74 F F F F 28.1 21.49 25.39 F F F F 29.78
1728� 2592 24.58 29.61 F F F F 30.27 19.19 25.25 F F F F 32.19
3456� 5184 21.92 31.51 F F F F 32.77 14.73 25.44 F F F F 35.16

3

56� 80 21.99 20.77 16.42 25.82 11.19 24.68 23.51 22.84 21.13 17.23 24.25 10.24 26.68 24.85
104� 160 23.21 22.8 F 28.7 10.35 25.55 24.33 22.33 23.64 F 27.47 9.24 27.55 26.51
216� 320 23.99 26.07 F F F F 25.82 19.87 19.51 F F F F 27.87
432� 648 25.07 28.43 F F F F 27.48 17.29 19.16 F F F F 29.43
864� 1296 26.47 31.77 F F F F 30.43 16.04 20 F F F F 32.3
1728� 2592 27.36 35.47 F F F F 34.41 14.91 21.73 F F F F 35.71
3456� 5184 24.37 35.9 F F F F 36.76 13.94 26.33 F F F F 37.06

4

56� 80 23.11 19.12 20.01 27.84 7.88 26.91 24.95 22.11 19.64 20.84 25.81 9.71 27.58 26.08
104� 160 22.97 23.64 F 28.35 8.26 26.29 25.4 21.14 22.61 F 27.55 8.34 27.68 26.55
216� 320 22.72 24.49 F F F F 25.36 20.67 22.85 F F F F 26.92
432� 648 22.35 24.54 F F F F 25.25 20.27 23.04 F F F F 27.34
864� 1296 21.97 24.03 F F F F 25.07 19.64 23.14 F F F F 27.59
1728� 2592 21.74 24.33 F F F F 25.88 18.57 23.23 F F F F 28.99
3456� 5184 20.14 25.15 F F F F 27.3 16.32 23.39 F F F F 31.2
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Fig. 14: The comparison of recovery performance for different
sampling approaches.

The sampling rate for all samplers is the same and equal to
23.75%. The first and the second ranks are belonging to the
proposed measurement-adaptive sampler+CA recoverer and
MAR sampler+CA recoverer, respectively. It is noticeable that
the performance of IMAT and IMATI recovery algorithms
under the pure random sampling strategy are better than other
state-of-the-art samplers due to their nature.

G. Recovery Robustness in the Presence of Noise

In order to evaluate robustness of the proposed CA-based
recovery algorithm in the presence of noise, we can model the
noisy subsampled image, Is, as

Is � Is � pMs dNq, (10)

where matrices Is, Ms, and N denote the noise-free sub-
sampled image, the binary sampling mask, and Additive
White Gaussian Noise (AWGN) with the distribution of
N p0, σ2

AWGNq, respectively. We then applied the normalized
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Fig. 15: Average PSNR (dB) vs the noise variance, σ2
AWGN,

in the case of noisy measurements.

version of Is between 0 and 1 to CA recoverer. Figure 15
plots average PSNR in dB vs the noise variance, σ2

AWGN, for
21 well-known test images of the size 512�512. In this figure,
σ2

AWGN � 0 means the noise-free case. The suggested method
shows better performance in terms of the noise variance than
IMAT and IMATI approaches. All curves exponentially decay
by increasing σ2

AWGN. As mentioned before, other algorithms
fail to recover these images due to data dimensionality.

H. Performance of Joint Sampling/Recovery Frameworks

In practice, design of sampling structure and recovery stage
are closely related to each other. Here, we jointly compare
the performance of the proposed sampling/recovery with other
state-of-the-art frameworks [6, 7, 13, 15, 16]. To do this, we
collected 27 randomly selected samples from Microsoft Object
Recognition Database as shown in Fig. 16, which were already
employed in [7]. At first, the randomly chosen images were
cropped for highlighting salient objects in the scene, and then
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Fig. 16: From top to down and left to right, test samples of
Microsoft Database indexed by numbers 1 to 27.
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Fig. 17: Normalized Recovery Error (NRE) of different ap-
proaches for the images labeled in Fig. 16.

their gray-scale versions were resized to 128�128 dimensions
using the bicubic interpolation to be able to compare different
algorithms of various complexity. Figure 17 plots NRE vs
image number as indexed by numbers 1 to 27 in Fig. 16 for
competing methods. The average NREs are given in legend
parentheses. As shown, the average NRE of the proposed
scheme is lower than other methods. BCS failed to recover
the smooth images 4 and 18, whereas our scheme retrieved
them with minimum recovery error. For a fair comparison, we
set the sampling rate of competing methods the same as the
average rate 32.44% obtained adaptively by our sampler.

V. DISCUSSION

In order to implement the proposed sampling and recovery
algorithms in practice, we can consider a mechanism similar
to the structure of image acquisition using Rice single-pixel
camera [20]. However, one of the main differences is to utilize
a small array of sensors but not a single photo-diode. This
allows us to measure adaptively local image content, sample
in 2-D space, and recover scene by the suggested approach.
The solution is to focus the physical scene on a Digital Micro-
mirror Device (DMD) via a primary lens. The DMD itself is
partitioned into non-overlapping b � b patches such as 8 � 8
blocks. In a sequential line-scan manner and at each time, only
one of the analog image patches is reflected to another lens
by configuring mirror positions. Other mirrors reflect the scene
on a black absorbent surface. This secondary lens focuses the
light of that single patch on an 8� 8 CCD or CMOS sensor.
After amplifying the signal and passing through an Analog
to Digital Converter (ADC), the digitized sub-image, R, is
obtained. Afterwards, the textureness of the patch is measured.
Then, based on the proposed sampler, the sampling mask, M,
and the sub-sampled image, S, are determined. This process is

repeated until the generation of the binary mask as well as the
sub-sampled image pertaining to the last patch. The overall
sampling mask, Ms, and corresponding sampled image, Is,
can be stored on a memory card. In the decoding phase, the
proposed recoverer gets Ms and Is and finally restores the
image scene, pIp.

VI. CONCLUSION

This paper suggested a measurement-adaptive sparse image
sampling and recovery framework. The proposed sampler
adaptively measures the required sampling rate and accord-
ingly determines sample positions by a combined uniform,
random, and nonuniform sampling mechanism. Our idea orig-
inated from the fact that natural images may have lowpass,
bandpass, highpass, or sparse components depending on the
scene under view. Therefore, a measurement-adaptive mecha-
nism was advised to trap informative samples. Unlike Gaussian
measurement sensing scenario, the proposed sparse coding
style does not need all samples in advance.

In the recovery phase, we modeled the problem by a cel-
lular automaton machine. The suggested algorithm converges
always at a few generations. Low computational burden and
memory usage are two main advantages of this algorithm in
comparison to sophisticated techniques of ISP [16], TSCW-
GDP-HMT [19], and BCS [6], especially in reconstruction of
mega-pixel range imaging such as remote sensing. In CA-
based recovery algorithm, updating rule for reviving dead
cells is done based on a simple weighted averaging. As a
future work, more precise predictors can be utilized for this
purpose. Also, the suggested sampling/recovery pipeline can
be generalized to other sparsifying transform domains like
wavelets. Extensive tests on standard image data-sets, infra-
red, and mega-pixel imaging show the capabilities of proposed
technique for practical implementations of compressively sam-
pled imaging systems.

APPENDIX

The quantization matrix corresponding to the texture η is
formulated as

Qη � max
1¤i,j¤b

pt
sη
100

Qr �
1

2
Iu, Iq, (11)

in which the matrix I denotes a b� b all-one matrix. Also, the
scaling factor, sη , and the reference quantization table, Qr, are
determined by

sη �

"
5000
η , 0� ¤ η   50

2p100� ηq, 50 ¤ η ¤ 100
, (12)

and

Qr �

�
�����������

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

�
����������


.
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